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Computer modelling calculations will be presented which verify the fact that, if a single 
reaction follows either Arrhenius or transition state kinetic theory over its entire extent, then the 
maximum rate of reaction data obeys the modified Kissinger equation, irrespective of the 
applicable kinetic model. The magnitude of the Kissinger parameter correction term is 
dependent on the model, ranging from about 0.4% for n th order and random nucleation, Avrami- 
Erofeev models to 17% for three dimensional diffusion controlled reactions. The consequences of 
selecting the incorrent kinetic model in interpreting experimental thermoanalytical data will be 
examined, thereby giving a rational explanation for the wide range of published kinetic 
parameters for a number of solid state decompositions. 

Amongst the several thermoanalytical techniques available, thermogravimetry, 
in particular, provides an excellent means for studying the kinetics of single 
reactions and multiple processes. Although the isothermal technique is favored, 
non-isothermal thermogravimetry offers several advantages. This is very much the 
case when the complex multiple degradative reactions involved in fossil fuel 
pyrolysis are investigated [ 1, 2]. In such situations, one cannot utilize the isothermal 
technique with any confidence, since nothing can be said regarding the reactions 
occurring prior to the system attaining the isothermally set temperature. 

Over the last three decades, a number of kinetic analysis schemes, based upon 
relationships between the temperature at which the reaction rate attains a 
maximum value and the heating rate have been proposed. Perhaps the most well- 
known relationships are identified with the names of Kissinger [3] and Ozawa [4]. 
In recent years the use of the Ozawa equation has gained popularity. The Kissinger 
equation has been criticized, since as originally postulated, it is applicable only to 
the most simple processes, namely single first order reactions. 
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658 ELDER: APPLICABILITY OF THE KISSINGER EQUATION 

Recently, the author has proposed a generalized form of the Kissinger equation 
[5-1, and has used it successfully in studying multiple reaction schemes [6]. It is the 
purpose of this paper to extend the treatment of this aspect of non-isothermal 
kinetic analysis, and show the wide applicability of the generalized Kissinger 
equation. 

S u m m a r y  o f  theoret ical  aspects  

If the rate of a thermally-induced reaction follows the general relationship 

dot/dt = A" T "  e -E/~r'f(~) (1) 

where ct is the dimensionless degree of reaction and f(~t) is the kinetic model a 
dependency with T, R, A, and E having their usual significance*, then as shown [5] it 
also obeys the generalized Kissinger equation. 

m+2 
In ([J/T,~x) = In (AR/E)+In ~.(a , ,~J-E/RTm.~ (2) 

where 
-f'(ot,,,~j 

q~'(a--~) = (1 + mRY,,,,x/E) (3) 

If one makes the Arrhenius assumption, the temperature exponent, m = 0. However, 
transition state theory predicts m = 1. The integral form of the rate equation, from 
which Ozawa's equation is derived at �9 = a~,~, is given by the general relationship 
[5] ,  e q u a t i o n  (4), with the exponential integral p-function given by equation (5). 

F(ot) = A/(fl.(m + 1)). (E/R) m+ ~ " p . (E /RT)  (4) 

pm(E/R T) = exp ( -  E/R T). (R T/E)" + 2. yM(E/R 7") (5) 

In deriving his equation for the case m = 0, Ozawa [4,1 made two assumptions to 
express the p-function. Initially, only the first term (unity) of the polynomial, 
?o(E/RT), was used, which means that for nth order reactions, F(~tNx)= 1. 
However, he then used Doyle's linear approximation to express the p-function [7,1. 
The development of this equation was based upon the use of the three-term 
Schl6milch expansion for the polynomial ?o(E/RT) (see Blazejowski [8,1 for 
details). One cannot use both approximations in such a derivation. 

The function - f ' ( a N j  has been given [5,1 for a number of solid state kinetic 
model functions, tabulated, for example, by Brown, Dollimore and Galwey [9,1. In 

* See glossary of symbols, p. 668. 
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ELDER: APPLICABILITY OF THE KISSINGER EQUATION 659 

what follows, the various models will be designated by their commonly used 
symbols [ 10]. In order to develop degree and rate of reaction data for these models, 
a FORTRAN program, written originally to generate such data for single and 
multiple first order reactions [6], has been generalized. During the preparation of 
the more extensive and complex program, two errors in the integral and differential 
forms of thef(~t) function for three dimensional diffusion controlled processes [5] 
were discovered and corrected, as shown in the appendix. 

Application to various kinetic models 

A hypothetical reaction, with an activation energy, E, of 220 kJ. mol - 1, and a 
pre-exponential factor, A, of l01~ min-t ,  is considered. Figures 1 and 2 show the 
complement of the extent of reaction (1-ct) and the rate of reaction (d~/dt), 
respectively, at a heating rate of 10 degmin- t  for nine different models. The 
numerals 1 and 2 indicate first and second order reactions (F, 1; F, 2). 3 and 4 

A 

1.0L 

i 

0 75 

0.25 

30o ,.oo soo 60o 

Temperature ,~C 

Fig. 1 Complementary extent of reaction (1- : t )  as a function of temperature at fl = 10~ .min-  t 

calculated for E = 220 k J- mol - ~, A = l0 t 5 min - ' (m = 0). 1-9, models FI,  F2, A2, A3, R2, R3, 
D2, D3, and D4 
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660 ELDER: APPLICABILITY OF THE KISSINGER EQUATION 

indicate the Avrami-Erofeev two and three dimensional bulk growth of nuclei 
models (A2; A3). 5 and 6 refer to two and three dimensional phase boundary 
movement models (R2; R3). 7 indicates the two dimensional diffusion control model 
(D2). Three dimensional diffusion control has been described by the Jander and 

~c_ 0.5 
E 

0.4 

03 

0.2 

0,1 

4 

i 
5 ' 

r_ 
3oo 40o 5oo 600- 

Tempereture ,oC 

Fig. 2 Rate of  react ion (dot/dr) as  a funct ion  o f  t emperature  at fl = 10~ -1 calculated  for 

E =  220 kJ 'mol  -~, A = l 0  ss min  -~ (m=0).  1-9, models FI,  A2, A3, R2, R3, D2, D3, 
and  D4 

Ginstling-Brounshtein equations. 8 and 9 refer to these two models, D3 and D4, 
respectively. 

As can be seen, there are significant differences in both the positions relative to 
temperature and the characteristic contours of the several curves. Thus, for example, 
reactions under three dimensional diffusion control [8, 9] are 90-95~o completed 
prior to the onset of n th order or Avrami-Erofeev reactions [1-4] with identical 
energetic parameters. The latter type reactions are particularly characterized by 
very narrow temperature boundaries between onset and completion, whereas n zh 
order reactions are typified by broader rate of reaction curves. As n increases, so the 
tailing edge of the curves becomes more extended. Contrary to this, diffusion 
controlled reactions [7-9], particularly three dimensional, exhibit a broad 16ading 
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ELDER: APPLICABILITY OF THE KISSINGER EQUATION 661 

edge and a sharp tailing region. The phase boundary movement models [5, 6] 
exhibit behaviour somewhere between these two extremes, but like the diffusion- 
controlled models, the leading edge is relatively broader than the tailing region. 

From similar data to that shown in figures 1 and 2, generated for heating rates 
from 1 degmin -1 to 100 degmin -1, ct,~, and T,~ values were calculated, and 
Kissinger analyses, with and without the logarithmic correction term in equation 

104/T, K-1 
12 13 t4. 15 

-8 ~"'~',~ ~ m 
=0 

"-.,......-.<. 
-14 ~ 

- 1 6 -  *'x'- x ~ m=l ~ "  

L~ -20 

c -22 ~ C  

Fig. 3 Typical Kissinger plots, uncorrected (U) and corrected (C) for models F2 (2), legend X and D4 (9), 
legend 0, calculated for E = 220kJ.mol -~, and A = 1015 min -~ (m=0) and 
A = 101ZK - l"min  -1 (m= 1) 

(2), were performed. Typical uncorrected (U) and corrected (C) Kissinger plots for 
case m=0 are shown in Figure 3 for two models, a second order reaction (F, 2 
-2U/C) and a three dimensional diffusion-controlled model (9U and 9C), 
described by the Ginstling-Brounshtein equation [5] (D4). For comparison, similar 
plots for the case m = 1 are shown. In this case, the Arrhenius pre-exponential factor, 
A, was changed to 1012 K ~t min-2. As can be seen, both the uncorrected and 
corrected Kissinger plots are linear and essentially parallel. For the second order 
model, the plots are essentially indistinguishable. However, for the D4 model, there 
is a significant change in the intercept. 

The correction terms for each of the several models considered are listed for both 
cases m=0  and m= 1 at the two extreme heating rates in tables la and lb, 
respectively. The change in r,,~ with heating rate is minimal, namely <0.6% sK- i, 
for all kinetic models. The logarithmic correction terms in the modified Kissinger 
equation are, with the exception of the three-dimensional diffusion-controlled 
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Table la 

ELDER: APPLICABILITY OF THE KISSINGER EQUATION 

Modified Kissingor Equation Correction Terms for Various Models 
Arrhenius Parameters: E = 220 kJ �9 mol "t A = l0 t s min-t 

#= 1 ~ ' min -! = 100 ~ -s 

In 4, 0 (C~max) in 4"o (amax) In 4"0 (amax) 
Model amax In 4"0 (C~max) In (glT~nax) (%) C~max In (/~IT~nax) (%) 

F, 1 0.6145 0 0 0.6103 0 0 
F, 2 0.4741 0.049 -0.37 0.4720 0.054 -0.62 
A2 0.6216 -0.039 0.30 0.6207 -0.043 0.49 
A3 0.6286 -0.046 0.35 0.6247 -0.051 0.58 
R2 0.7379 0.668 -5.1 0.7361 0.665 -7.6 
R3 0.6866 1.082 -8.3 0.6874 1.080 -12.4 
D2 0.8130 0.643 -4.9 0.8105 0.646 -7.4 
D3 0.6728 2.284 -17.6 0.6705 2.295 -26,6 
D4 0.7526 2.215 -17.0 0.7484 2.222 -25.7 
BI* 0.8174 -0.455 3.5 0.8164 -0.458 5.2 

*Model valid only for a~0.5 

Table lb Modified Kissinger Equation Correction Terms for Various Models 
Transition State Parameters: g = 220 kJ . tool -~ A = 10~ ~ K "t �9 rain -~ 

# = 1 ~ �9 rain "a # = I00 *C �9 rain -I 

In 4"i (amax) 
In 4"1 (amax) (%) In 4"1 (amax) .In (#/T~nax) (%) Model ama x In 4"~ (amax) In Ca/T~nax ) ama x 

F, 1 0.6151 -0.027 0.13 0.6100 -0.030 0.19 
F, 2 0.4772 0.022 -0.11 0.4738 0.022 -0.15 
A2 0.6228 -0.065 0.33 0.6205 -0.072 0.46 
A3 0.6305 -0.072 0.36 0.6245 -0.079 0.51 
R2 0.7365 0.642 -3.3 0.7356 0.637 -4.1 
R3 0.6896 1.056 -5.4 0.6888 1.052 -6.8 
D2 0.8156 0.614 -3.1 0.8103 0.616 -4.0 
D3 0.6759 2.257 -11.6 0.6704 2.264 -14.8 
D4 0.7531 2.188 -11.2 0.7511 2.189 -14.3 
BI* 0.8184 -0.481 2.4 0.8157 -0.487 3.1 

*Model valid only for a~0.5 

models, relatively small. Irrespective of their magni tude,  the appl icat ion of the 

modified Kissinger equa t ion  yields correct kinetic parameter  values in all cases, as 

shown in tables 2a and  2b. If there is doub t  as to the correct kinetic model  to be used 

in calculating the correction term, little is lost. Kissinger analyses were performed on  

the data, assuming in all cases a (1 - ~)" model. The results are shown in the sixth and  

seventh columns of tables 2a and  2b. Again, one finds that  the E values are insensible 
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to the model selected, and the A values are similar in magnitude to those obtained by 
analyzing without correction, as shown in the second and third columns of these 
tables. The n values are of the order shown in tables 3 and 4. In certain cases, one 
obtains exactly what is expected. Thus, for the two and three-dimensional phase 

T a b l e  3 a  A r r h e n i u s  ana lys i s  k i n e t i c  p a r a m e t e r s ,  

f ( a )  = (1 - ~ ) n  a s s u m p t i o n  

M o d e l  k i n e t i c  p a r a m e t e r s :  E = 2 2 0  k J  �9 m o l  -~ A = 101 s ,  m i n - i  

# = 1 - 1 5 0 ~  , m i n  - t  

M o d e l  E,  k J  �9 m o l - 1  A, m i n - I  n 

A 2  4 5 1  - 4 5 2  2 3 0  - 2 �9 1 0 3 ~  1.0 

A 3  6 8 3  - 6 8 5  4 7 0 0  - 3 " 104 s 1.0 

R 2  2 2 0  -+ 0 .1  1 .99  • 0 . 0 4  " 101 s 0 . 5 0  

R 3  2 2 0  • 0 .2  3 .02  -+ 0 .09  " 101 s 0 .67  

D 2  1 0 4 . 3  +- 0 . 1 4  1,9 - 2 5 . 1  �9 10 s 0 .27  

D 3  1 0 6  - 105  5 . 5 4  - 6 1 . 8  �9 l 0  s 0 .67  

D 4  105 - 1 0 4  4 . 8 8  - 5 5 . 9  - l 0  s 0 . 4 3  

B1 2 2 0 . 8  • 0 .1  3,5 -+ 0 .05  " 1014 0 . 2 9  

T a b l e  3 b  A r r h e m u s  ana lys i s  k i n e t i c  p a r a m e t e r s ,  

[(a) = (1 - a ) n  a s s u m p t i o n  

M o d e l  k i n e t i c  p a r a m e t e r s :  E = 2 2 0  k J  �9 t oo l  -x A = 101 z ,  K - r a in  -~ 

= 1 - 1 5 0  ~  �9 m i n  -1 

M o d e l  E,  k J  �9 mo1-1  A, K-~  �9 m i n  ~ 1 n 

A 2  4 5 7  - 4 5 9  4 2 6  - 4 . 10 a 7 1.0 

A 3  6 9 4  - 6 9 8  1 4 7 3  - 0 .1  . 1044  1.0 

R 2  2 2 0 . 1  ~- 0 . 2  2 . 0 4  • 0 . 0 7  " 1 0  ~ ~ 0 . 5 0  

R 3  2 2 0 . 1  • 0 .3  3 . 0 4  • 0 ,17  - 1012  0-67  

D 2  100 .7  • 0 .47  1 .44  - 1 4 . 4 . 1 0 3  0 .27  

D3 103  - 1 0 2  4 . 3 0  - 4 2 . 0  - 103 0 .67  

D 4  103  - 101  4 . 0 0  - 37 .4  - 103 0 . 4 3  

B1 2 2 0 . 3  -+ 0 .2  3 .24  • 0 .09  " 1011 0 .29  

boundary movement models, R2 and R3, one has f ( ~ ) =  2 . (1-~t )  l/z, and 
3-(1-0t) 2/3, respectively. This analysis confirms one obvious difficulty, namely the 
distinguishing of Avrami-Erofeev reactions, A2 and A3, from simple first order 
reactions, F1. 

It is pertinent at this point to consider what happens if an Arrhenius analysis is 
performed on extent and rate of reaction data, generated for the several different 
kinetic models, assuming the data conforms to an n 'b order model, Such a set of 
a n a l y s e s  h a v e  b e e n  c a r r i e d  o u t  f o r  e a c h  m o d e l  a t  e a c h  h e a t i n g  r a t e  u s e d  i n  t h e  

J. Thermal Anal 30, 1985 



ELDER: APPLICABILITY OF  THE KISSINGER E Q U A T I O N  

Table 4a  Fr iedman  analysis kinetic parameters  
Model parameters:  E = 220 kJ �9 mol  -a A = 101 ~ m i n - '  3 = 1 - 150 ~ �9 min  -1 

665 

Actual  model  (1 - a )n  model  

Model E, kJ �9 mol  " t  A �9 10 -aS , min  - t  E, kJ �9 mol  -~ 4 - 1 0 - 1 s ,  min  -1 n 

F1 220.02 • 0.03 1.003 • 0.004 220.02 • 0.03 1.003 • 0.004 1.0 
F2 220.00 ~ 0.02 1.000 • 0.003 220.02 • 0.02 1.000 • 0.003 2.0 
.42 220.14 • 0.27 1.012 • 0.023 220 - 225.2 0A5 - 7.33 1.0 
A3 219.4 • 1.86 0.943 • 0.277 219.9 • 0.485 0.41 - 4.73 1.0 
R2 220.00 • 0.043 1.000 • 0.006 220.0 • 0.024 1.99 • 0.007 0.5 
R3 220.03 • 0.079 1.005 • 0.011 220 - 214 2.99 - 1.10 0.67 
D2 220.02 • 0.064 1.003 • 0.009 220 - 219.6 19.71 - 1.09 0.27 
D3 220.01 • 0 .030 1.002 • 0.004 220 - 217.8 87.96 - 1.66 0.67 
D4 220.00 • 0.033 1.000 • 0.005 220 - 219 87.82 - 2.92 0.43 
BI*  220 .00  • 0.008 1.000 • 0.001 220 - 221 0.31 - 0.13 0.29 

*0,50 < ~ <0.95 

Table 4b Fr iedman  analysis kinetic parameters  
Model parameters:  E = 220 kJ �9 tool" 1 A =1012  K.min "1 3 = 1 - 150 ~ �9 min-  

Actual  model  (1 - cO n model  

Model E, kJ �9 tool -z A �9 10 -12,  rain -1 E, kJ �9 tool" 1 A �9 10 -1 ~ , rain -1 n 

F1 220.02 • 0.05 1.003 • 0.006 220.02 �9 0.05 1.003 • 0.006 1.0 
F2 220.01 • 0.02 1.001 • 0.003 220.01 • 0.02 1.001 - 0.003 2.0 
A2 220.05 • 0.13 1.005 • 0.019 220 - 221.3 0.45 - 3.71 1.0 
A3 219.6 • 0.82 0.945 • 0 .110 220.0 _+ 0.60 0.42 - 3.21 1.0 
R2 220.05 • 0.21 1.007 • 0.003 220.06 • 0.22 2.022 • 0.07 0.5 
R3 220.02 • 0.08 1.002 -+ 0.010 220 - 219.5 2.99 - 2.77 0.67 
D2 220.0 • 0.03 1.000 • 0.003 220 - 219 19.62 - 0.65 0.27 
D3 220.00 • 0.04 1.001 • 0.005 220 - 217.5 87.26 - 1.56 0.67 
D4 220.0 • 0.02 1.000 • 0.003 220 - 217.9 87.44 - 2.20 0.43 
BI*  220.0 • 0.01 1.000 • 0.002 220 - 220.4 0.32 - 0.12 0.29 

*0.50 < a~ <0.95 

p r e c e d i n g  K i s s i n g e r  a n a l y s i s .  T h e  r e s u l t s  a r e  s u m m a r i z e d  in  t a b l e s  3 a  a n d  3b ,  a n d  

a r e  q u i t e  s t a r t l i n g .  O n e  o b t a i n s  k i n e t i c  p a r a m e t e r s  e x t e n d i n g  o v e r  a n  e x t r e m e l y  

w i d e  r a n g e  o f  v a l u e s ,  v e r y  l a r g e  f o r  t h e  A v r a m i - E r o f e e v  (A2 ,  A 3 )  m o d e l  i n p u t  d a t a ,  

v e r y  s m a l l  f o r  t h e  d i f f u s i o n - c o n t r o l l e d  ( D 2 ,  D 3 ,  D 4 )  m o d e l  i n p u t  d a t a .  O n e  

q u e s t i o n s  t h e  u t i l i t y  o f  p e r f o r m i n g  a n  A r r h e n i u s  a n a l y s i s  o n  o n e  s e t  o f  d a t a .  

T o  c l a r i f y  t h e  s i t u a t i o n ,  A r r h e n i u s  a n a l y s e s  a t  f i x e d  e x t e n t s  o f  r e a c t i o n  (a  = 0 . 0 5 -  

0 .95) ,  n a m e l y  F r i e d m a n  I-11] a n a l y s e s ,  w e r e  c a r r i e d  o u t  o n  t h e  s a m e  i n p u t  d a t a  

o b t a i n e d  a t  t h e  s e v e r a l  h e a t i n g  r a t e s  u s e d  fo r  t h e  K i s s i n g e r  a n a l y s e s ,  a s s u m i n g  b o t h  
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the correct and a n  n th order reaction model. The results are summarized in tables 4a 
and 4b. The distortions in the Arrhenius analysis kinetic parameters, resulting from 
the incorrect choice of kinetic model, essentially disappear since one utilizes data at 
the same f(~t) values in the Friedman analysis, emphasizing the utility of this 
procedure in analyzing thermal data. One obtains essentially the correct E values 
with mildly incorrect A values, which change slightly with extent of reaction. A 
comparison of the results of tables 2 and 4 shows that the modified Kissinger and 
Friedman analysis derived kinetic parameters are in very good agreement. 

Conclusiom 

The modified Kissinger equation is generally applicable in analyzing thermally 
induced extent and rate of reaction data, yielding correct values for the kinetic 
parameters, the energy of activation, E, and the pre-exponential factor, A. One 
should proceed with caution in assessing the results of Arrhenius analyses of non- 
isothermal reaction rate data. Injudicious choice of reaction model can result, in 
certain cases, in incorrect values of kinetic parameters of widely varying magnitude, 
as emphasized in tables 3a and 3b. Thus, Zsak6 and Arz [12] quote an extremely 
wide range of kinetic parameters reported for the calcination of calcium carbonate, 
a number of which are unbelievable. Since one can only be certain of obtaining 
correct values by following the Friedman procedure, which necessitates acquiring 
data at several heating rates, one can easily perform the Kissinger analysis. Even if 
the simple form of equation (2), without the logarithmic correction term, is used, the 
resulting E values are correct. In utilizing the correct form of the equation, even if the 
reaction model selected is incorrect, the resulting A values are of the correct order of 
magnitude. 

A number of factors may be used to assist one choose the correct kinetic model. 
The value of ~.~x at (d~t/dt),~x is specific for a model. Since the values do vary slightly 
with heating rate and for a number of models are close, one should consider also the 
character of the extent and rate of reaction curves in making the decision. If one 
assumes a n  1'1 tb order reaction, n may be easily calculated from a knowledge of ct,~, 
as previously indicated [5]. The resulting value also assists the decision. Finally, 
from a Friedman analysis, the direction and order of magnitude of the change in A 
with ~t is also helpful in the final analysis. 

Several of the algorithms and procedures developed for this generalized model 
calculation program have been incorporated into a thermogravimetric data 
analysis program which the author is currently using to interpret data for several 
interesting solid state reactions in the mineral and fossil fuel field, to be reported in 
the near future. 

J. Thermal Anal. 30, 1985 



ELDER: APPLICABILITY OF THE KISSINGER EQUATION 667 

Appendix 

The kinetic model parameters used in calculating the correction term in the 
modified Kissinger equation (2) have been given previously [5]. For the Jander 
model for three dimensional diffusion control, D3, the f(~t) function quoted by 
Blazejowski et al. [13-1, which contains a typographical error, was used without 
checking, resulting in incorrect equations for at_~, F(~_~) and -f ' (~t ,~).  The 
correct forms are given by Sestak and Berggren [14]. In the case of the Ginstling- 
Brounshtein model, D4, a typographical error has been noted in the equations 
previously given [5]. The author apologizes for these mistakes, which are rectified, 
as shown below. The reader is referred to the original paper [5,1 for the definition of 
the r/function. The equation numbers are as previously given [5]. 

Jander model (D3 

3 "(1 _ ~)1/3 
f(ct) = 2" [(1 -~t) -  1/3 _ 1] (17) 

O~,nax = 1 - - ( q + l / 2 )  -3  (17a) 

F(~_~) = [ ( r / -  1/2)/(q + 1/2),12 (17b) 

- f ' (~_~)  = t/- [(t/+ l /2)/( t /-  1/2),12 (l 7c) 

Ginstling-Brounshtein Model (D4) 

3 
f(~) = 2. [(1 - ~)- :/3 _ 1] (18) 

otm~, = 1 -- [ l /6r/+ (1/36q 2 + 1/67)1/2,13 (18a) 

2"Otmax (1 - -  0~max) 2/3 (18b) F(ot~: , )  = 1 3 

1 
- f ' ( ~ z . x )  = 08c)  

2"(1 - 0 [ m a x )  2 / 3 "  [(1 - ~ ) l / a _  112 
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Glossary of symbols 

0~ 

cl~/dt 
f(ot) 
F(~) 
T 
E 
A 

m 

R 

pm(E/RT) 

extent of reaction (dimensionless) 
rate of reaction (min- t) 
general expression for kinetic model 
general expression for the integral of the inverse f(a) function 
absolute temperature (K) 
energy of activation (kJ. mol- 1) 
pre-exponential factor (K- m. min- ~) 
exponent of weak temperature term in rate equation (1) 
universal gas constant (8.31434 k J-mol-  1 K-  1) 
heating rate (deg. rain-t or K" min-l )  
general function including the exponential temperature integral 

This work was conducted as a part of the Kentucky Energy Resource Utilization Program supported 
by the Commonwealth of Kentucky, Kentucky Energy Cabinet. 
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ZusmnmmfL~mg - -  Computer-Modeliberechnungen werden dargelegt, die die Tatsache bestfitigen, 
dab die maximale Reaktionsgeschwindigkeit unabh/ingig vom angewandten Modell yon der 
modiflzierten Kissinger-Gleichung beschrieben wird, wenn eine einzelne Reaktion fiber den gesamten 
Vedauf hinweg entweder der kinetischen Arrhenius- oder der Obergangszustands-Theorie folgt. Die 
G r 6 ~  der Kissinger-Parameter h/ingt vom Modell ab und liegt zwischen 0,4% ffir Avrami-Erofeev- 
Modeile mit n-ter Ordnung und ungeordneter Kristallkeimbildung und 17% f~r dreidimensionale 
diffusionskontrollierte Reaktionen. Die bei Wahl eines falschen kinetische Modells ffir die lntcrpretie- 
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rung thermoanalytischer Daten eintretenden Folgen werden untersucht,  wobei eine vernfinftige 

Erkl~irung t'fir die grofle Streuung yon publizierten kinetischen Parametern einer Anzahl yon 

Festk6rpetT.ersetzungsreaktionen gegeben wird. 

Pe~ulolMir l'lpg~lCTaaJleHl~ KOMnblOTepHble MO./leflbHble pacqeTbi, llO,aTaep~alOllUte, tlTO eC.llH 

e~ancrBeaaaa pcaxrm~ no.rlHo~rblo llO~lqHHaeTOi ypaBHenmo AppeuHyca Hall TeOpHH nepexo~aoro 

gltHCTHqe~Ir COCTOJlHHI1, TOF~la MaKcHMaJlbHaJl CKOpOCTb peaXllltH HO/3.qHHI~eTCJ! BI,121OH3MeHeHHOMy 

ypaBHeHam Kaccarmacepa, He3aBHCHMO OT HpitMeltJleMO~ KHHeTItqeCKOI~ MO21e.rlH. 3aanenae napaMeT- 

pa KHCCHH~Cepa xoppeKtmOHHOrO MHOXilTe.rI~I 3aBHCMT OT n3aTOfi MO~eJlll rl itaMeHaerc~l OT 0,4~o :Laa 

n-nopstaxa pealCll, HH H MO,tleYIH HpOa3BO.rlbHOrO o6pa3osaaHa lleHTpOa KpHcTaJI.rlH3aLIHH MO~e, JIg 

AspaMs-Epodpeesa llo 17~ - -  aJIx Mo~eaH Tpexpa3MepablX Jlit~dpy3rlOHHO-ICOSTpO.rlHpyeMblX 

peaxtmfi. H c ~ e ~ o s a n m  I1OC~e,aCTBHg B~6opa HellpaBH.VlbHOfi KHHCTHtigCKOfi MO~eJIH IlpH HHTepHpeTa- 

IlllH 3gCllepHMeHTB.qbHbiX TepMoaHaYlHTHtleeKHX :laHHblX, ,tlaBasl K 3TOMy pallHOHaYlbHOC O6"b$1CHeHHe 

mHpOxoMy SHTCpBa.r[y ny6~HXyeMlaX KHHeTHqeClCHX HapaMeTpoB p~taa TBep~.OTe.,qtbHbiX pea~aHfi 
pa3JIO)lfeHHIL 
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