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Computer modelling calculations will be presented which verify the fact that, if a single
reaction follows either Arrhenius or transition state kinetic theory over its entire extent, then the
maximum rate of reaction data obeys the modified Kissinger equation, irrespective of the
applicable kinetic model. The magnitude of the Kissinger parameter correction term is
dependent on the model, ranging from about 0.4%, for n'® order and random nucleation, Avrami—
Erofeev models to 179 for three dimensional diffusion controlled reactions. The consequences of
selecting the incorrent kinetic model in interpreting experimental thermoanalytical data will be
examined, thereby giving a rational explanation for the wide range of published kinetic
parameters for a number of solid state decompositions.

Amongst the several thermoanalytical techniques available, thermogravimetry,
in particular, provides an excellent means for studying the kinetics of single
reactions and multiple processes. Although the isothermal technique is favored,
non-isothermal thermogravimetry offers several advantages. This is very much the
case when the complex multiple degradative reactions involved in fossil fuel
pyrolysis are investigated [ 1, 2]. In such situations, one cannot utilize the isothermal
technique withany confidence, since nothing can be said regarding the reactions
occurring prior to the system attaining the isothermally set temperature.

Over the last three decades, a number of kinetic analysis schemes, based upon
relationships between the temperature at which the reaction rate attains a
maximum value and the heating rate have been proposed. Perhaps the most well-
known relationships are identified with the names of Kissinger [3] and Ozawa [4].
In recent years the use of the Ozawa equation has gained popularity. The Kissinger
equation has been criticized, since as originally postulated, it is applicable only to
the most simple processes, namely single first order reactions.
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658 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

Recently, the author has proposed a generalized form of the Kissinger equation
[5], and has used it successfully in studying multiple reaction schemes [6]. It is the
purpose of this paper to extend the treatment of this aspect of non-isothermal
kinetic analysis, and show the wide applicability of the generalized Kissinger
equation.

Summary of theoretical aspects

If the rate of a thermally-induced reaction follows the general relationship
da/dt = A-T™ e ERT. f(a) )

where o is the dimensionless degree of reaction and f(«) is the kinetic model «
dependency with T, R, A, and E having their usual significance*, then as shown [[5] it
also obeys the generalized Kissinger equation.

In (ﬂ/T:;z) = In(AR/E)+In & ,(2,,..)— E/RT,,,. 2
where P )
—J (Fmax
D(Aps) = {(+mRT,_JE) 3)

If one makes the Arrhenius assumption, the temperature exponent, m=0. However,
transition state theory predicts m=1. The integral form of the rate equation, from
which Ozawa’s equation is derived at a=a,,,,, is given by the general relationship
[5], equation (4), with the exponential integral p-function given by equation (5).

F(@) = A/(B-(m+1))-(E/Ry"** - p,(E/RT) 4

Pm(E/RT) = exp (— E/RT)- (RT/E)y"*?-y,(E/RT) %)

In deriving his equation for the case m=0, Ozawa [4] made two assumptions to
express the p-function. Initially, only the first term (unity) of the polynomial,
yo(E/RT), was used, which means that for nth order reactions, F(a,,,) = 1.
However, he then used Doyle’s linear approximation to express the p-function [7].
The development of this equation was based upon the use of the three-term
Schlomilch expansion for the polynomial yo(E/RT) (see Blazejowski [8] for
details). One cannot use both approximations in such a derivation.

The function —f'(a,.,,) has been given [5] for a number of solid state kinetic
model functions, tabulated, for example, by Brown, Dollimore and Galwey [9]. In

* See glossary of symbols, p. 668.
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ELDER: APPLICABILITY OF THE KISSINGER EQUATION 659

what follows, the various models will be designated by their commonly used
symbols [10]. In order to develop degree and rate of reaction data for these models,
a FORTRAN program, written originally to generate such data for singie and
multiple first order reactions [6], has been generalized. During the preparation of
the more extensive and complex program, two errors in the integral and differential
forms of the f(«) function for three dimensional diffusion controlled processes [5]
were discovered and corrected, as shown in the appendix.

Application to various kinetic models

A hypothetical reaction, with an activation energy, E, of 220 kJ -mol !, and a
pre-exponential factor, 4, of 10'3 min ™!, is considered. Figures 1 and 2 show the
complement of the extent of reaction (1 —a) and the rate of reaction (da/dt),
respectively, at a heating rate of 10 degmin ! for nine different models. The
numerals 1 and 2 indicate first and second order reactions (F, 1; F, 2). 3 and 4

300 %00 500 600
Temperature ,2C

Fig. 1 Complementary extent of reaction (1 —x) as a function of temperature at f = 10°C-min~!
caleulated for E = 220 kJ-mol ™%, A = 10'* min~' (m=0). 1-9, models F1, F2, A2, A3, R2, R3,
D2, D3, and D4
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660 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

indicate the Avrami-Erofeev two and three dimensional bulk growth of nuclei
models (A2; A3). 5 and 6 refer to two and three dimensional phase boundary
movement models (R2; R3). 7 indicates the two dimensional diffusion control model
(D2). Three dimensional diffusion control has been described by the Jander and

o
Ul

da/dt , min

0.4

03

0.2

0.1

d |
500 600

Temperature ,°C
Fig. 2 Rate of reaction (da/d¢) as a function of temperature at f = 10°C-min~! calculated for
E=220 kJ-mol™!, 4 =10 min~! (m=0). 1-9, models FI, A2, A3, R2, R3, D2, D3,
and D4

Ginstling-Brounshtein equations. 8 and 9 refer to these two models, D3 and D4,
respectively.

As can be seen, there are significant differences in both the positions relative to
temperature and the characteristic contours of the several curves. Thus, for example,
reactions under three dimensional diffusion control [8, 9] are 90-95% completed
prior to the onset of n'® order or Avrami-Erofeev reactions [1-4] with identical
energetic parameters. The latter type reactions are particularly characterized by
very narrow temperature boundaries between onset and completion, whereas n'®
order reactions are typified by broader rate of reaction curves. As n increases, so the
tailing edge of the curves becomes more extended. Contrary to this, diffusion
controlled reactions [7-9], particularly three dimensional, exhibit a broad léading
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ELDER: APPLICABILITY OF THE KISSINGER EQUATION 661

edge and a sharp tailing region. The phase boundary movement models [5, 6]
exhibit behaviour somewhere between these two extremes, but like the diffusion-
controlled models, the leading edge is relatively broader than the tailing region.

From similar data to that shown in figures 1 and 2, generated for heating rates
from 1 degmin~! to 100 degmin™!, a,,, and T,,. values were calculated, and
Kissinger analyses, with and without the logarithmic correction term in equation

1047, K
2 3 1% 15
8 T

n(p/Tm2)

Fig. 3 Typical Kissinger plots, uncorrected (U) and corrected (C) for models F2(2), legend X and D4 (9),
legend 0, calculated for E =220kJ-mol™!, and A =10 min™' (m=0) and
A=102K ' min"! (m=1)

(2), were performed. Typical uncorrected (U) and corrected (C) Kissinger plots for
case m=0 are shown in Figure 3 for two models, a second order reaction (F, 2
—2U/C) and a three dimensional diffusion-controlled model (9U and 9C),
described by the Ginstling-Brounshtein equation [5] (D4). For comparison, similar
plots for the case m = 1 are shown. In this case, the Arrhenius pre-exponential factor,
A, was changed to 10'2K~"min~!. As can be seen, both the uncorrected and
corrected Kissinger plots are linear and essentially parallel. For the second order
model, the plots are essentially indistinguishable. However, for the D4 model, there
is a significant change in the intercept.

The correction terms for each of the several models considered are listed for both
cases m=0 and m=1 at the two extreme heating rates in tables la and 1b,
respectively. The change in «,,, with heating rate is minimal, namely <0.6%, sK ~*,
for all kinetic models. The logarithmic correction terms in the modified Kissinger
equation are, with the exception of the three-dimensional diffusion-controlled
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662 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

Table 1a Modified Kissinger Equation Correction Terms for Various Models
Arrhenius Parameters: E =220 kJ - mol™! 4 = 10'® min™!

8=1°C « min~* 8=100°C + min!
In @, (e no®
Model amax  In ®, (4max) W%fﬁ)_(%) omax 10 @, (@max) Tn_ﬁ%fﬁ)“(%)

F,1 0.6145 0 0 0.6103 0 0
F,2 04741 0.049 ~0.37 0.4720 0.054 -0.62
A2 0.6216 -0.039 0.30 0.6207 —0.043 0.49
A3 0.6286 ~0.046 0.35 0.6247 ~0.051 058
R2 0.7379 0.668 -5.1 0.7361 0.665 1.6
R3 0.6866 1.082 -8.3 0.6874 1.080 -124
D2 0.8130 0.643 ~4.9 0.8105 0.646 -7.4
D3 0.6728 2.284 -17.6 0.6705 2.295 -26.6
D4 0.7526 2.215 -17.0 0.7484 2.222 -25.7
B1* 0.8174 ~0.455 35 0.8164 -0.458 52
*Model valid only for a>0.5

Table 1b Modified Kissinger Equation Correction Terms for Various Models
Transition State Parameters: £ =220kJ -mol~! A4 =10!? K~! - min™!

g=1°C+ min~! g=100°C » min™*

In &, (« In @, (o
Model amax  In ®, (@max) m—(ﬂ’/—;—sn‘:'—a;‘")‘l(%) omax  In @, (emax) mﬁ“fa—i"% (%)
F,1 06151  -0.027 0.13 0.6100  —0.030 0.19
F,2 04772 0.022 -0.11 0.4738 0.022 -0.15
A2 0.6228  —0.065 0.33 0.6205  -0.072 0.46
A3 0.6305  —0.072 0.36 0.6245  —0.079 0.51
R2 0.7365 0.642 -3.3 0.7356 0.637 -4.1
R3 0.6896 1.056 -54 0.6888 1.052 -6.8
D2 0.8156 0.614 -3.1 0.8103 0.616 -4.0
D3 0.6759 2.257 ~11.6 0.6704 2.264 ~14.8
D4 0.7531 2.188 -112 0.7511 2.189 -14.3
Bl* 0.8184  —0.481 2.4 0.8157  -0.487 3.1

*Model valid only for «20.5

models, relatively small. Irrespective of their magnitude, the application of the
modified Kissinger equation yields correct kinetic parameter values in all cases, as
shown in tables 2a and 2b. If there is doubt as to the correct kinetic model to be used
in calculating the correction term, little is lost. Kissinger analyses were performed on
the data, assuming in all cases a (1 — )" model. The results are shown in the sixth and
seventh columns of tables 2a and 2b. Again, one finds that the E values are insensible

J. Thermal Anal. 30, 1985
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664 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

to the model selected, and the A values are similar in magnitude to those obtained by
analyzing without correction, as shown in the second and third columns of these
tables. The n values are of the order shown in tables 3 and 4. In certain cases, one
obtains exactly what is expected. Thus, for the two and three-dimensional phase

Table 3a Arrhenius analysis kinetic parameters,
fla) = (1 — )M assumption
Model kinetic parameters: E = 220k]J - mol’1 A=10'%, min~?
g=1-150°C  min™*

Model E, xJ - mol~? A, min™? n
A2 451 — 452 230 —2-10%° 1.0
A3 683 — 685 4700 — 3 - 10%° 1.0
R2 220+ 0.1 1.99 + 0.04 - 10*¢ 0.50
R3 220+ 0.2 3.02 + 0.09 - 10** 0.67
D2 104.3 £0.14 1.9 ~25.1-10¢ 027
D3 106 — 105 554 —61.8-10° 0.67
D4 105 — 104 4.88 — 559 -10° 0.43
Bl 220.8+ 0.1 3.5+ 0.05- 10 0.29

Table 3b Arrhenius analysis kinetic parameters,
fle) = (1 — &) assumption
Model kinetic parameters: £ =220kJ -mol™ 4 =10"% K -min~"
g=1-150°C-min~’

Model E, kJ - mol™! A4, K- -min™* n
A2 457 — 459 426 -4 -10*7 1.0
A3 694 — 698 1473 — 0.1 - 10** 1.0
R2 220.1 £0.2 2.04 % 0.07 - 10'? 0.50
R3 220.1 0.3 3.04 £ 0.17 - 10*? 0.67
D2 100.7 £ 0.47 144 - 14.4-10° 0.27
D3 103 - 102 4.30 - 42.0 - 10° 0.67
D4 103 — 101 4.00 - 374 -10° 043
Bl 220.3 0.2 3.24 £ 0.09 - 10*? 0.29

boundary movement models, R2 and R3, one has f(z) =2-(1—a)"*, and
3-(1—a)?*3, respectively. This analysis confirms one obvious difficulty, namely the
distinguishing of Avrami-Erofeev reactions, A2 and A3, from simple first order
reactions, F1.

It is pertinent at this point to consider what happens if an Arrhenius analysis is
performed on extent and rate of reaction data, generated for the severa! different
kinetic models, assuming the data conforms to an n'™ order model. Such a set of
analyses have been carried out for each model at each heating rate used in the

J. Thermal Anal. 30, 1985



ELDER: APPLICABILITY OF THE KISSINGER EQUATION 665

Table 42 Friedman analysis kinetic parameters

Model parameters: £ =220kJ -mol™ 4 =10"* min™' 8=1-150°C - min~}

Actual model (1 — o) model

Model E kJ -mol™* A-107'% min~* EXI-mol™! 4.107*% min™* n
F1 220.02 * 0.03 1.003 * 0.004 220.02 £ 0.03 1.003 t 0.004 1.0
F2 220.00 % 0.02 1.000 £ 0.003 220.02 £0.02 1.000 £ 0.003 2.0
A2 220.14 £ 0.27 1.012 £ 0.023 220 —225.2 045 -7.33 1.0
A3 2194 *1.86 0.943 £ 0.277 2199 0485 041 -4.73 1.0
R2 220.00 +0.043 1.000 + 0.006 220.0 *0.024 1.99 £ 0.007 0.5
R3 220.03 £ 0.079 1.005 £ 0.011 220 — 214 299 — 1.10 0.67
D2 220.02 * 0.064 1.003 £ 0.009 220 —219.6 19.71 - 1.09 027
D3 220.01 £ 0.030 1.002 £ 0.004 220 -217.8 87.96 — 1.66 0.67
D4 220.00 % 0.033 1.000 £ 0.005 220 - 219 87.82 —2.92 043
B1*  220.00 * 0.008 1.000 £ 0.001 220 - 221 0.31 - 0.13 0.29

*¥0.50 < a <0.95

Table 4b Friedman analysis kinetic parameters

Model parameters: £=220kJ -mol™' 4=10'? K-min™* g=1-150°C.min"*

Actual model (1 - &) model

Model  E, kJ- mol™ A-107"% min™  E kJ-mol”' A4-107'* ,min™ n
F1 220.02 £ 0.05 1.003  0.006 220.02 * 0.05 1.003 £ 0.006 1.0
2 220.01 + 0.02 1.001 £ 0.003 220.01  0.02 1.001 * 0.003 2.0
A2 220.05  0.13 1.005 £ 0.019 220 - 221.3 045 - 3.71 1.0
A3 219.6 +0.82 0.945 £ 0.110 220.0 +0.60 042 - 321 1.0
R2 220.05t 0.21 1.007  0.003 220.06  0.22 2.022 % 0.07 0.5
R3 220.02 £ 0.08 1.002 * 0.010 220 — 219.5 299 —2.77 0.67
D2 2200 *0.03 1.000 £ 0.003 220 - 219 19.62 - 0.65 0.27
D3 220.00 £ 0.04 1.001 = 0.005 220 — 217.5 87.26 - 1.56 0.67
D4 220.0 *0.02 1.000 £ 0.003 220 — 217.9 87.44 — 2.20 0.43
B1* 2200 *0.01 1.000 = 0.002 220 - 2204 0.32 - 0.12 0.29
*0.50 < @ <0.95

preceding Kissinger analysis. The results are summarized in tables 3a and 3b, and
are quite startling. One obtains kinetic parameters extending over an extremely
wide range of values, very large for the Avrami-Erofeev (A2, A3) model input data,
very small for the diffusion-controlled (D2, D3, D4) model input data. One
questions the utility of performing an Arrhenius analysis on one set of data.

To clarify the situation, Arrhenius analyses at fixed extents of reaction (& = 0.05—
0.95), namely Friedman [11] analyses, were carried out on the same input data
obtained at the several heating rates used for the Kissinger analyses, assuming both

J. Thermal Anal. 30, 1985



666 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

the correct and an n'® order reaction model. The results are summarized in tables 4a
and 4b. The distortions in the Arrhenius analysis kinetic parameters, resulting from
the incorrect choice of kinetic model, essentially disappear since one utilizes data at
the same f(a) values in the Friecdman analysis, emphasizing the utility of this
procedure in analyzing thermal data. One obtains essentially the correct E values
with mildly incorrect 4 values, which change slightly with extent of reaction. A
comparison of the results of tables 2 and 4 shows that the modified Kissinger and
Friedman analysis derived kinetic parameters are in very good agreement.

Conclusions

The modified Kissinger equation is generally applicable in analyzing thermally
induced extent and rate of reaction data, yielding correct vatues for the kinetic
parameters, the energy of activation, E, and the pre-exponential factor, A. One
should proceed with caution in assessing the results of Arrhenius analyses of non-
isothermal reaction rate data. Injudicious choice of reaction model can result, in
certain cases, in incorrect values of kinetic parameters of widely varying magnitude,
as emphasized in tables 3a and 3b. Thus, Zsakd and Arz [12] quote an extremely
wide range of kinetic parameters reported for the calcination of calcium carbonate,
a number of which are unbelievable. Since one can only be certain of obtaining
correct values by following the Friedman procedure, which necessitates acquiring
data at several heating rates, one can easily perform the Kissinger analysis. Even if
the simple form of equation (2), without the logarithmic correction term, is used, the
resulting E values are correct. In utilizing the correct form of the equation, even if the
reaction model selected is incorrect, the resulting A values are of the correct order of
magnitude.

A number of factors may be used to assist one choose the correct kinetic model.
The value of ,,,, at (da/d?),,,, is specific for a model. Since the values do vary slightly
with heating rate and for a number of modeis are close, one should consider also the
character of the extent and rate of reaction curves in making the decision. If one
assumes an n'? order reaction, n may be easily calculated from a knowledge of a,,,.,
as previously indicated [5]. The resulting value also assists the decision. Finally,
from a Friedman analysis, the direction and order of magnitude of the change in A
with a is also helpful in the final analysis.

Several of the algorithms and procedures developed for this generalized model
calculation program have been incorporated into a thermogravimetric data
analysis program which the author is currently using to interpret data for several
interesting solid state reactions in the mineral and fossil fuel field, to be reported in
the near future.

J. Thermal Anal. 30, 1985



ELDER: APPLICABILITY OF THE KISSINGER EQUATION 667
Appendix

The kinetic model parameters used in calculating the correction term in the
modified Kissinger equation (2) have been given previously [5]. For the Jander
model for three dimensional diffusion control, D3, the f(x) function quoted by
Blazejowski et al. [13], which contains a typographical error, was used without
checking, resulting in incorrect equations for a,,,., F(0,.) and —f'(%,..)- The
correct forms are given by Sestak and Berggren [14]. In the case of the Ginstling—
Brounshtein model, D4, a typographical error has been noted in the equations
previously given [5]. The author apologizes for these mistakes, which are rectified,
as shown below. The reader is referred to the original paper [5] for the definition of
the n function. The equation numbers are as previously given [5].

Jander model (D3

3 (1=l
flo) = T2 7 _1] (17
OUax = 1—=(1+1/2)73 (17a)
Ftmar) = [(n—1/2)/(n+1/2)]? (17b)
~f(Omax) = 1 [(1+1/2)/(n—1/2)1? (17¢)
Ginstling-Brounshtein Model (D4)
3
J@) = 5= =] (18)
Oy = 1= [1/6n+(1/36n% +1/61)'/2]° (18a)
2-q
F(amax) =1- % _(1 _amax)2/3 (le)
1 (Gmar) = 1 18
me 2 (1 - amx)2/3 ) [(1 _amax)lls— 1]2 ( C)

J. Thermal Anal. 30, 1985



668 ELDER: APPLICABILITY OF THE KISSINGER EQUATION

Glossary of symbols

o extent of reaction (dimensionless)

da/dt rate of reaction (min™?)

Sf(@) general expression for kinetic model

F(a) general expression for the integral of the inverse f(a) function
T absolute temperature (K)

E energy of activation (kJ-mol 1)

A pre-exponential factor (K ™™ -min ")

m exponent of weak temperature term in rate equation (1)

R universal gas constant (8.31434 kJ-mol"* K™1)

B heating rate (deg. min ! or K-min~’)

p.{E/RT) general function including the exponential temperature integral

*

*

This work was conducted as a part of the Kentucky Energy Resource Utilization Program supported
by the Commonwealth of Kentucky, Kentucky Energy Cabinet.
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Zusammenfassung — Computer-Modeliberechnungen werden dargelegt, die die Tatsache bestétigen,
daB die maximale Reaktionsgeschwindigkeit unabhingig vom angewandten Modell von der
modifizierten Kissinger-Gleichung beschrieben wird, wenn eine einzelne Reaktion iiber den gesamten
Verlauf hinweg entweder der kinetischen Arrhenius- oder der Ubergangszustands-Theorie folgt. Die
GroBe der Kissinger-Parameter hingt vom Modell ab und liegt zwischen 0,4% fiir Avrami-Erofeev-
Modelle mit n-ter Ordnung und ungeordneter Kristallkeimbildung und 17% fiir dreidimensionale
diffusionskontrollierte Reaktionen. Die bei Wahl eines falschen kinetische Modells fiir die Interpretie-
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rung thermoanalytischer Daten eintretenden Folgen werden untersucht, wobei eine verniinftige
Erkldrung fir die groBe Streuung von publizierten kinetischen Parametern einer Anzahl von
FestkOrperzersetzungsreaktionen gegeben wird.

Pedyome — [lpeacrabiicHbl KOMIBIOTEPHBIE MOJIE/IBHBIE PACYETHI, MOATBEPXKAAIOIUME, HTO €CIIM
€IHHCTBEHHAS PeaKUMs MONHOCTHIO NOAYHHACTCA YPABHEHHIO APPEHHYCa MIIH TCOPHH NEPEXOJHOTO
KMHETHYECKOI'0 COCTOSHUS, TOT'1a MAKCHMAJIbHAA CKOPOCTb PEaKIlHH NOAMMHACTCSA BHIOWIMEHECHHOMY
ypasuennio Kuccunzxepa, He3aBHCHMO OT NPHMEHAEMO# KHHETHYECKOR Monen. 3uavcHue napameT-
pa Kuccunmxepa KOppPEKUMOHHOIO MHOXHTEJIS 32BHCHUT OT B3ATOH MOJIEH ¥ naMenseTcs ot 0,4% nna
n-NOpA/Xa PEAKUMH H MOJCIM [POH3BOJILHOrO OOpa30BaHMA UEHTPOB KPHCTALNIM3ALMH MOIEIH
Aspamu-Epodeesa m0 179, — s Modenn TPexpasMepHbix (Y3 HOHHO-KOHTPONHPYEMbIX
peakunii. Uccnenopakbl nocnencTens BpiGopa HelPaBHIbHOM KKHETHYECKOH MO/IEH NIPH HHTEPNPETA-
UMH 3KCIICPHMEHTANIBHBIX TEPMOAHATIHTHYECKHX JaHHBIX, AaBas K 9TOMY PallHOHANbLHOE 06 bACHEHHE
UIMPOKOMY HHTEPBATy MyCJHMKYEMBIX KMHCTHYECKHX MApPaMETPOB PANZ TBEPAOTELHBLIX PEaKIHi
PA3IOKECHHR.
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